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Introduction

Since the seminal paper by Kydland and Prescott [1982], dynamic general 
equilibrium models have been used to study the fluctuations of economic 
aggregates via the real business cycle theory, where exogenous productivity 
shocks are the principal factor behind changes in aggregated output. For further 
discussion see King and Rebelo [2000], Romer [2005], Wickens [2008].

One of the aspects of the model developed by Kydland and Prescott was 
that investments in future capital were time consuming and lasted for several 
periods before capital became operational. In order to produce one unit of 
capital, an agent who started an investment at time t would simply have to wait 
for the capital to be formed. Since investments were irrevocable, consumers 
were in fact incurring a sunk cost while making an investment, which did 
not produce any output until the formation of capital was complete. In fact, 
since the unfinished capital could not be used in production, consumers 
could not respond elastically to exogenous shocks, as their ability to smooth 
consumption inter-temporarily was significantly constrained by the capital 
formation technology.
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Though important, the approach by Kydland and Prescott presented the 
issue of time consuming capital formation in a simplified manner, as the 
transmission of an unfinished investment between stages was independent of 
the decision of an agent. At the start of an investment consumers determined 
the volume of capital which would eventually be formed, but had no impact 
on the duration of the process. Investments once started could not be stopped, 
postponed or finished earlier, which means the time of their completion did 
not vary endogenously due to exogenous shocks.

The abovementioned framework seems to be incomplete for two reasons. 
First of all, investments are usually an inter-temporal process in which each 
stage has to be financed separately. It is very unlikely that investors would 
be willing to pay for an investment once, at its start, rather than smooth the 
expenses over several periods. Whether in the housing market, or in production, 
the cost of investment is not incurred once, but is spread over a number of 
periods, each determined by a certain technological stage. What is more, due to 
technological issues, many expenses have to be covered sequentially, according 
to the specification of a given project. This implies that agents undertaking 
an investment have much more elasticity in allocating their resources among 
periods, rather than incurring a single sunk cost in the first stage of the capital 
formation process.

The other argument motivating this author to expand the approach by 
Kydland and Prescott is that the aforementioned elasticity of resource allocation 
allows agents to postpone or accelerate an investment by either reducing or 
increasing resources destined for a given project. This offers an opportunity 
to stop an unfinished investment when a negative economic shock hits an 
aggregated output, reducing the level of disposable income, and restart it once 
the economy has returned to its balanced path. This process might play a key 
role in an economic downturn, when agents are prone to postpone investments 
that have already been started in order to save scarce resources. Once the 
adverse economic situation is over, agents may be willing to recommence and 
complete previous investments. Such a situation might take place in housing 
markets, where long-lasting investments might be postponed and accelerated 
a number of times depending on the overall economic situation.

The two above arguments suggest that by enabling agents to decide on the 
level of multi-stage investments, as well as on the speed of their completion, one 
could describe economic dynamics more precisely and find a better explanation 
for developments taking place during an economic cycle.

From the technical point of view, introducing a model with the possibility 
of investing separately at different stages of a project, is directly related to 
several important issues. Throughout the paper a substantial number of our 
proofs will refer to dynamic programming arguments. In our work we will 
assume that it takes at least period J to complete one unit of capital. Each 
period t, the state variable is a measure of operating capital kt, as well as 
a measure of unfinished projects, denoted as sj,t, j = 1, …, J, j-periods before 
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completion1. Usually in the literature, in order to prove the existence of an 
optimal allocation in an economy with an infinite horizon, a state space of the 
model is bounded in order to bound the domain of the corresponding value 
function, and thus bounding the function itself. This operation makes several 
dynamic programming arguments valid (see [Blackwell, 1965]).

It is quite common for different authors to impose an assumption on both 
the technology in the economy and the rate of capital depreciation, such that 
the space of values of capital could be bounded2. However, once we introduce 
to a model an economic variable that is not subject to depreciation, we might 
lose the boundedness of the corresponding state variable set, which makes the 
standard dynamic programming arguments invalid (see [Stockey, Lucas and 
Prescott, 1989]).

When analyzing a state variable of unfinished projects, one cannot exclude 
a situation when the measure of unfinished projects at a given stage increases 
in an unbounded manner. Even if one attempted to bound the state space by 
some sm, i.e. a level of unfinished projects that cannot be exceeded, such an 
operation would not find a reasonable economic interpretation. Even if not 
optimal, infinite measures of unfinished projects have to be taken into account 
when discussing time-to-build economies. Moreover, in order to bound the state 
space of unfinished projects, one should impose strong concavity assumptions 
on the investment technology, which in the case of our model is linear.

Even though the issue of unbounded returns arises naturally in economic 
models, they are not easy to deal with. When the instantaneous return function 
is continuous on its domain but unbounded, the Bellman equation constructed 
for a given optimization problem might not have a solution, as the corresponding 
operator might not have a fixed point (not to mention the lack of uniqueness 
of a fixed point, as the space of unbounded continuous functions is a Banach 
space only in very specific topologies). Since the space of unbounded continuous 
functions incorporated with the sup norm is not a compact space (nor is 
it a Banach space), the existing fixed-point arguments are invalid. This in 
particular concerns the techniques presented in Bertsekas and Shreve [1978] or 
Stockey, Lucas and Prescott [1989], which are based on the Banach contraction 
theorem and on Blackwell’s sufficient conditions for contraction.

The above problem may occur in dynamic models due to the unbounded 
state space in which the value function is defined. As mentioned before, in some 
cases, the domain can be bounded in a natural way, so that the problem can 
be solved using the standard methods for bounded functions without affecting 
the economic value of the model (several ideas are presented in Stockey, Lucas 
and Prescott [1989]); however, in a great deal of examples, including ours, 
different techniques have to be used.

1 In our work we use the notation presented in the paper by Kydland and Prescott [1982].
2 Usually this assumption can be reduced to the existence of some ,k <3r  such that ,f k kd=r r^ h  

where ¦ denotes a technology in a given economy, and d the rate of capital depreciation. In 
other words, this assumption states that there always exists a maximal level of sustainable 
capital, and thus the state space is reduced to , .k0 r6 @
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Recent literature has widely focused on the idea of incorporating the function 
space with the so-called „weighted norms,” or determining limit solutions for 
„truncated models” (see [Durán, 2003], [Stockey, Lucas and Prescott, 1989], 
and [Hernández-Lerma and Lasserre, 1999]). Some other important results, 
representing a different approach to the problem at various levels of generality, 
are presented in Le Van and Morhaim [2002], Le Van and Vailakis [2005], Le 
Van, Morhaim and Wailakis [2008], and Boyd [1990].

A very resourceful idea was presented by Rincón-Zapatero and Palmero 
[2003, 2007, 2009], who applied the so-called k-local contraction to study 
stochastic dynamic models with unbounded returns. Their framework was 
substantially improved by Matkowski and Nowak [2009], who proved the 
existence of a unique solution to the Bellman equation in a space of a broad 
class of unbounded functions. The main idea behind their work was to operate 
on a space of functions that are bounded in a given class of metrics on any 
bounded set. By showing that the Bellman equation had a unique solution on 
any of such bounded sets, it was sufficient to find a metric and a sequence of 
bounded sets, which preserve the property in the limit.

The second issue that arises when modelling time-to-build economies with 
multi-stage investments is the question of concavity and differentiability of 
the value function. In our framework, in order to move a unit of investment 
from one stage to another, the maximal level of resources destined for that 
purpose depends directly on the mass of projects in a given stage, since an 
agent can move no more than sj,t projects from stage j to j + 1 at time t. 
This implies that in many situations the optimal investment level might be 
boundary, as an agent might be willing to move exactly sj projects to the next 
stage. To be precise, such a situation takes place in the steady state of our 
model, as agents continue to move the same level of investments throughout 
each period, in order to sustain the level of steady state capital, and invest 
exactly sm,t. Since the standard argument in the literature by Benveniste and 
Scheinkman [1979] requires the optimal policies to be in the interior of the 
feasible action set, their result fails to hold in our framework. What is more, 
due to the specification of our model, the Inada conditions, which usually help 
rule out boundary solutions, also fail.

This may also be related to the question of the existence of prices 
in an economy, where the value function is either non-concave or non-
differentiable, leaving aside computational issues3. The results concerned 
with the decentralization of non-convex and non-smooth models are based on 
a similar idea. Guesnerie [1975], in his pioneering study, based his proof on the 
convexity of the tangential approximations of production and preference sets, 
which were separated using the standard separation theorem. Other authors, 
including Brown [1991], Cornet [1981], and Bonisseau and Cornet [1988], 
exploited the properties of the Clarke tangent cones, convex by definition, 

3 Notably, due to the presence of boundary solutions, optimal allocations and prices cannot be 
studied via the first-order conditions.



Paweł Dziewulski, On Time-to-Build Economies with Multiple-Stage Investments 27

which make it possible to formalize marginal prices using the dual Clarke 
normal cone. Unfortunately, Clarke’s normal cones may often be too large for 
an adequate description of marginal pricing, as shown in Khan [1988]. More 
satisfactory results for both finite and infinite-dimensional commodity spaces 
were obtained by Khan [1988, 1991, 1999] and Cornet [1990]. By applying 
non-smooth programming methods, they were able to formalize marginal prices 
by the basic normal cone. At the same time, the idea did not involve any sort 
of convex separation (for further discussion see chapter 8 in Mordukhovich 
[2006]).

The differentiability of the utility function in the optimal allocation is 
applicable in computing equilibrium prices; however, in many cases, smoothness 
is not obtainable. In dynamic programming literature, the differentiability of 
the value function is obtained mainly through the aforementioned theorem by 
Benveniste and Scheinkman [1979]. Unfortunately, the conditions stated in the 
theorem make it invalid when applying to many economic problems where 
boundary solutions arise naturally.

On the other hand, as shown by Rincón-Zapatero and Santos [2009], the 
interiority of the optimal solution is not necessary for the value function to be 
differentiable. In fact, they show that, under some constraint qualifications, 
the value function may remain differentiable, even though the optimal policy 
is on the boundary of the feasible action set.

Applying dynamic programming in the general equilibrium analysis is 
resourceful not only because one is able to prove the existence of prices 
supporting the equilibrium allocation, but also because it makes the proof 
constructive. The usage of Lagrange multipliers in welfare economics was 
probably presented for the first time by Lange [1942], although it was 
Negishi [1960] who showed their importance and economic interpretation. 
Once it was determined that the Lagrange multipliers of the social planner 
optimization problem are the equilibrium prices in the decentralized economy, 
the computation of equilibria became simpler, especially in smooth economies, 
where the Lagrange multipliers are equal to the marginal utility in the optimal 
allocation points. An analogous result was proven for the case of non-smooth 
convex economies by Papageorgiou [1960], where the equilibrium prices were 
the elements of the sub-differential of the utility function in the optimal allocation 
(for further discussion see Bewley [2007]). The advancements in the theory 
of dynamic programming, such as those concerning the infinite dimensional 
optimization problems (see [Le Van and Saglam, 2004], [Daniele, 2007], and 
[Daniele et al., 2007]), or a non-smooth approach to the envelope theorem 
(see [Milgrom and Segal, 2002], [Tarafdar, 2009], and [Morand, Reffett and 
Tarafdar, 2009]), provide new tools for the analysis of the problem.

Even though the aforementioned arguments can guarantee that the value 
function of the corresponding optimization problem is differentiable, there is 
still the question of how to study optimal policies which might be boundary 
policies. Since they cannot be studied via first-order conditions imposed on 
the first-order derivatives of the corresponding Lagrangian, different methods 
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have to be implemented. What is more, even the standard monotone methods 
based on the supermodularity of the objective function are of little use, since 
the analyzed action sets, i.e. budget sets, are simplexes rather than lattices.

A standard approach to the theory of monotone comparative statics (MCS) 
has some limitations. A great deal of results presented in the literature cited 
above holds when the underlying set of actions or strategies is a lattice, unlike 
in the case of feasible action sets induced by budget constraints. This means that 
the MCS cannot be applied even to fundamental topics in economic theory4.

A different approach was presented by Quah [2007]. By incorporating action 
sets with the so-called flexible set order, he showed that, under a weak notion 
of concavity of the objective function, optimal policy correspondences may be 
ascending in the standard interval order. His work finds great application in 
issues that could not be investigated using the standard MCS methods, including 
the theory of consumer choice.

In our model of a time-to-build economy, a representative consumer is 
maximizing his lifetime utility dependent on his consumption and leisure. 
A single consumption good is produced using a constant returns-to-scale 
technology, where the only two factors of production are capital and labor. Since 
we analyze a time-to-build economy, it takes several periods to form a single 
unit of capital. Unlike in Kydland and Prescott [1982], where an investment 
takes place only once during the whole process of capital formation, in our 
model an investment has to be made at each stage of its construction. Moreover, 
our economy is affected in each period by Markov productivity shocks.

The analysis of the model concerns several issues, which cannot be tackled 
using the standard methods for dynamic general equilibrium models. First, 
the state space of the economy is not bounded, and so is the corresponding 
value function. As mentioned before, this poses the question of the existence of 
a solution to the corresponding Bellman equation. Second, the law of motion 
imposed on state variables is defined using non-differentiable functions, which 
could compromise the smoothness of the value function itself. Moreover, once 
the law of motion of the state variables is not smooth, optimal policies cannot 
be studied via first-order conditions of the optimization problems. In addition, 
the budget set of the consumer is not a lattice, which makes the standard 
MCS arguments invalid.

In our work we provide three basic results. First, exploiting the work of 
Matkowski and Nowak [2009], we prove the existence of a unique unbounded 
value function satisfying the corresponding Bellman equation. Second, we 
characterize its monotonicity and strict concavity with respect to initial 
conditions. In addition, due to the work by Rincón-Zapatero and Santos [2009], 
we prove that the value function is continuously differentiable at every point 
in its domain. Eventually, profiting from the work by Quah [2007], we obtain 

4 Several ideas on how to deal with this particular issue using the MCS were presented in 
Antoniadou [2006] and Mirman and Ruble [2003]; however, they are based on orders that 
are of limited economic value.



Paweł Dziewulski, On Time-to-Build Economies with Multiple-Stage Investments 29

the continuity of the optimal policy functions, as well as their monotonicity 
with respect to state variables. Eventually, we provide a constructive proof of 
the existence of prices supporting the optimal allocation, using the Negishi 
[1960] method.

In addition to the main results, we discuss the optimality of the presented 
economy. Moreover, we present a method for computing the value function, as 
well as equilibrium prices and allocations, and derive the theoretical error bounds.

Our paper is organized as follows. In the next paragraph we describe an 
economy, with the presentation of assumptions concerning preferences and 
technology. Next we proceed to analyze the model from the point of view 
of a social planner. In that section we provide our main results, concerning 
the existence and main properties of the value function, as well as the 
characterization of the optimal policies, and the steady state of the economy. 
In the following section we concentrate on an example of a decentralized 
economy and prove the two welfare theorems for our framework.

The model

In this section we present a model of a time-to-build economy with multiple-
stage investments. First we present the assumptions with a suitable economic 
interpretation to which we will refer throughout the paper. Then we will move 
to the first part of the analysis, where socially optimal allocations will be 
characterized. We proceed with a description of our model.

Assumptions

In our economy we will consider a representative consumer whose 
instantaneous utility depends on consumption c Î X and leisure n Î N. His 
instantaneous preferences over a set of feasible bundles of consumption and 
leisure are described by utility function u. The consumer is in possession of 
capital, denoted by k, which is used directly in the process of production. In 
addition, the agent may devote a part of his time to labor, denoted by l. A single 
consumption good is produced each period with technology ¦, dependent on 
k, l, and exogenous shock z. The shock values are governed by stochastic 
transition kernel Q. A product obtained each period can be either consumed or 
invested in future capital. Throughout this paper we will refer to the following 
assumptions. In order to clarify the notation, if f (·) is a real function, then 
fi (·) will denote its first-order derivative with respect to variable i.

Assumption 1 (Preferences) Let c Î X º R+, N º [0, 1], and u: X × N ® R be 
non-decreasing on X × N. Moreover,

(i) u Î C1 (X × N),
(ii) u is strictly concave on X × N,
(iii) "c Î X, n Î N, uc (0, n) = un (c, 0) = +¥.
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The above conditions are quite standard in research reports on dynamic 
general equilibrium models. First, we narrow our analysis to preferences over 
consumption and leisure, which can be represented by a differentiable utility 
function. Second, we expect the utility function to exhibit diminishing marginal 
utility with respect to both analyzed goods. Finally, we impose Inada conditions 
in order to rule out boundary solutions of consumer utility optimization.

Next we proceed with a description of production technology in the 
economy.

Assumption 2 (Technology) Let k Î K º R+, z Î Z, and ¦: K × N × Z ® R+ be 
non-decreasing on K × N for every z Î Z. Moreover,

(i) ¦ Î C1 (X × N), "z Î Z,
(ii) ¦ is concave on X × N, "z Î Z,
(iii) ¦ (0,·,·) º ¦ (·,0,·) º 0, "z Î Z,
(iv) " (k, l) Î K × N, ¦ (k, l,·) is bounded,
(v) ¦ is homogeneous of degree one.

Again, the conditions presented in assumption 2 are standard for this line 
of literature. We assume that the technology is concave, i.e. exhibits decreasing 
marginal productivity, non-decreasing in the level of capital and labor, with 
constant returns to scale. Moreover, in order to produce strictly positive 
levels of output, both factors of production have to be strictly positive. The 
differentiability assumption is technical, however it implies smoothness of the 
economy.

Since in our description exogenous shocks play a crucial role, it is necessary 
to characterize a distribution from which shock values are drawn. We present 
a formal description with the following assumption.

Assumption 3 (Shocks) Let Z Ì R be a compact set, and Z be its Borel set. 
Q is a transition function on (Z, Z) satisfying the Feller property, i.e. for any 
measurable function ¦: X × Z ® R, continuous on X, h (·, z): = òZ ¦ (·, z¢) dQ (z¢|z) 
is continuous on X.

Once we have presented the premises of the model, we proceed to the 
characteristics of the time-to-build technology, and the process during which 
the capital is formed.

In the time-to-build economy, it takes at least J periods to build one unit of 
new capital, i.e. a project started at time t will be completed no sooner than at 
time t + J. Let m denote the number of stages before a unit of capital is fully 
operational. In order to accomplish the construction of one unit of capital in 
J periods, it is necessary to invest 1/lm in every mth stage, each (t + J – m)th

period, m = 1, …, J, lm ³ 1 and / .1 1mm

J

1 m ==
/  Let {1, …, J} º J.

A measure of all projects which at time t are m stages before completion 
will be denoted by sm,t Î Sm Í R+. By investing im,t at time t, an agent may 
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move a measure of lm im,t projects from sm,t to a subsequent stage. However, 
it takes one whole period to complete one stage of investment. The law of 
motion of a measure of all unfinished projects m stages before completion can 
be described in the following way. "m Î J,

 ; ; .max mins s i s i0, , , , ,m t m t m m t m t m m t1 1 1 1m m= - ++ + + +$ $. .  (1)

According to (1), the evolution of sm,t is as follows. The measure of projects 
m periods before completion increases by the measure of projects moved from 
state sm+1,t to sm,t, i.e. by lm+1 im+1,t, but no more than the measure of projects 
at stage sm+1,t. Analogously, sm,t decreases by the measure of projects which 
have been moved from state sm,t to sm–1,t, but no more than by the measure 
of projects at stage m. In other words, by investing im,t, one can move no 
more than sm,t projects to the next stage of capital formation. Since a measure 
of projects which have not been started at time t, i.e. are J stages before 
completion, is infinite, we set sJ,t = +¥, for all t = 0, …

Let st = [s1,t, …, sJ–1,t] Î ×m Sm º S. Due to the above description, it is 
natural to state the following assumption.

Assumption 4 Let .S R J 1/ +
-

In the final stage of an investment fully operational capital is formed 
according to a standard law of motion:

 ; ,mink k s i1 , ,t t t t1 1 1 1d m= - ++ ^ h $ .  (2)

where d Î (0,1] denotes the rate of capital depreciation. Notably, the analyzed 
model is a generalization of an optimal growth model as well as of a standard 
time-to-build model by Kydland and Prescott [1982]. By setting l1 = 1 we 
obtain the former, while with lJ = 1 we obtain the latter.

Having characterized the model we begin the analysis of a time-to-build 
economy with multi-stage investments. First we present the solution from the 
point of view of a social planner.

Social planner problem

We begin our analysis by defining and solving the centralized problem. 
We give sufficient conditions for the existence of an optimal solution in the 
economy, and characterize the main properties of the optimal allocations.

For any given initial level of capital k0 Î K, any vector of measures of 
unfinished projects s0 Î S, and any initial shock value z0 Î Z, the social 
planner solves the following discounted infinite horizon problem:

 , , , ,s maxv k z E u c n
, , ,ic n l

t
t t t0 0 0 0 0

tt t t t 0

b=
3

=

+

3
=
+

^ ^ah hk
" ,

/  (3)
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s.t. "t = 1, 2, …

 , , ,f k l z c iJ ,t t t t m tm$ +
d^ h /  (4)

 ,n l 1t t+ =  (5)

 , , , , , .s Sc X n l N k K z Zt t t t
t

td d d d d  (6)

 ,s ,J t 3=+  (7)

 ; ,mink k s i1 , ,t t t t1 1 1 1d m= - ++ ^ h $ .  (8)

J/{ },m Jd6

 ; ; ,max mins s i s i0, , , , ,m t m t m m t m t m m t1 1 1 1m m= - ++ + + +$ $. .  (9)

 ' ' ,Prob z z z z Q z zt t1# = =+_ _i i  (10)

where conditions (4)-(6) define a feasible action set for each t, and (7)-(10) 
characterize the law of motion of state variables. b Î [0,1) denotes a discount 
factor.

For the sake of notation, later in the paper we will omit time subscripts 
where possible and denote a vector of state variables in a subsequent period 
by (k¢, s¢, z¢) respectively. Moreover, we reduce the number of decision 
variables by substituting decision variable nt by lt, such that lt = 1 – nt. In 
addition, since u is increasing, constraint (4) will be satisfied with equality,
i.e. , , ,c f k l z iJ ,t t t t m tm= -

d^ h /  where , , .f k l z i ,t t t m tm$^ h /  Bellman’s equation

corresponding to problem (3), for any given given initial vector of state variables 
k Î K, s Î S, z Î Z, is

( , , ) , , , ', ', ' ' ,s smaxv k z u f k l z i l v k z Q dz z1J
,l i

mm z
b= - - +

d^a ^ _b h k h il/ #  (11)

 . . , , ,s t f k l z i 0J mm $-
d^ h /  (12)

 , ,l 0 1d 6 @  (13)

 ' ; ,mink k s i1 1 1 1d m= - +^ h " ,  (14)

J/{ },m Jd6

 ' ; ; .max mins s i s i0m m m m m m m1 1 1m m= - + + + +" ", ,  (15)
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Let ¡ , , ,s Rk z 0 1 J#1 +^ h 6 @  denote a set of all pairs (l, i), satisfying conditions 
(12) and (13). Obviously, ¡ is a continuous correspondence, with a compact 
and convex graph. We will refer to ¡ (k, s, z) as a feasible action set.

Equation (11) is standard to dynamic economic theory. Nevertheless, basing 
on the standard arguments, it is not obvious whether it has a solution. Note 
that as K and S are unbounded (both sets are equivalent to R+ and R J 1

+
- ) 

respectively, it is not obvious whether there exists a solution to problem (11) 
in a set of continuous functions on K × S. Since the space of unbounded 
continuous functions is not bounded in the sup norm, Bellman operator 
T : C (K × S × Z) ® C (K × S × Z),

 
, ,

, , , ', ', ' ' ,

s

s

maxTv k z

u f k l z i l v k z Q dz z1J

( , ) ( , , )° s

n

l i k z

mm
n

Z
b

=

- - +

d

d

^ ^

^a ^ _b

h h

h k h il/ #
 (16)

where k¢ and s¢ are defined as in ( ) and ( ) respectively, might not converge 
in the space of bounded and continuous functions as n ® ¥, since Blackwell’s 
sufficient conditions for contraction (see [Blackwell, 1965]) are not satisfied. 
Even though vn could be somehow bounded on K using methods described 
among others in Stockey, Lucas and Prescott [1989], as it was mentioned 
in the introduction, there is no natural and economically admissible method 
to bound the value function on S. For this reason, we refer to the work by 
Rincón-Zapatero and Palmero [2003, 2007, 2009], and Matkowski and Nowak 
[2009], where a method was developed for finding a unique solution to the 
Bellman equation in a space of unbounded continuous functions.

To be precise, Matkowski and Nowak [2009] prove the existence of a unique 
solution to the Bellman equation in a space of functions f: X ® R, defined on 
some arbitrary set X, which are bounded in the following form:

: ,
m cj

jj

j

1z
z

=
3
=

+/

where cj > 1, m = {mj} is an increasing, unbounded sequence of positive real

numbers, and ( ) ,sup xj x K j
z z=

d , where {Kj} is a strictly increasing (in

the sense of set inclusion) sequence of subsets of X, such that .X K jj 1=
3

=

+'
For further discussion, please refer to the original paper. Since our analysis 
will be restricted to continuous functions, we denote the space by Cm (X).

Now we can present our first result.

Proposition 2.1 (Unique value function) Let assumptions 1-4 be satisfied. There 
exists an increasing, unbounded sequence m = {mj} and a unique function 
v* Î Cm (K × S × Z), which satisfies equation (11).
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Proof: Let {Kj × Sj} be a strictly increasing (in the sense of set inclusion)

sequence of compact subsets of K × S, such that .S SK Kj jj 1# #=
3

=

+'
Define : : , , .S SC K Z C K Z m j 1mb j j# # d # # 6 f#z z= =^ ^h h$ .  Clearly

Cmb (K × S × Z) is a closed subset of Cm (K × S × Z). Define T on 
Cmb (K × S × Z) as in (16). Due to the continuity assumptions imposed on u 
and ¦, compactness of ¡ (·), and the fact that ¦ is bounded on Z, Tv is well 
defined. By the maximum theorem of Berge [1963], Tv is continuous on every 
set Kj × Sj × Z. Moreover, it is continuous on K × S × Z (see remark 1(a) in 
Matkowski and Nowak [2009]). Thus T is mapping Cmb (K × S × Z) into itself. 
The rest follows Proposition 3 in Matkowski and Nowak [2009]. Q.E.D.

The uniqueness and continuity of a value function satisfying equation (11) 
is a powerful result, taking into an account that we are analyzing unbounded 
functions. Nevertheless, in order to make the analysis more resourceful, we 
would like to examine other properties of the value function, in particular its 
smoothness.

Our next result will concern the differentiability of the value function 
satisfying equation (11). Since the law on motion imposed on s Î S includes 
maximum and minimum functions, which are not continuously differentiable 
at every point in its domain, it is not obvious whether v* Î C1 (K × S), 
"z Î Z. However, it is possible to reformulate the problem in order to obtain 
additional results.

First of all, observe that it is never optimal to set investment im > sm/lm.
To show this, assume the opposite. Let ' , , , , / ,i i i i i s>'

'j J j j j1 f m= _ i  and
i = (i1, …, ij, …, iJ), (l. i), (l, i¢) Î ¡ (k, s, z), for any k, s and z. Then,

, , , ', ', ' '

, , / , ', ', ' '

, , ,

s

s

s

u f k l z i i l v k z Q dz z

u f k z i s l v k z Q dz z

v k z
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1<

'mm j j z

mm j j j z

#

b

m b

- - - +

- - - +

!
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^_ ^ _

^_ ^ _

^

h i h i

h i h i

h

/
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#

#

where k¢ and s¢ are defined as in (14) and (15) respectively. The first inequality 
is implied by the law of motion of s and monotonicity of u, and the second 
by the definition of v. The above observation makes it possible to reduce the 
problem to a much simpler case where all the constraints are linear and 
differentiable.

Denote a set of all (l, i) Î ¡ (k, s, z), such that "m Î J, im Î [0, sm/lm] by 
G (k, s, z). The problem in (11) can be reformulated as follows:

, , , , , ', ', ' ,s smaxv k z u f k l z i l v k z Q dz z1
( , ) ( , , )

J
l i k s z

mm z
b= - - +

d
d

C
^ ^_ ^ _bh h i h il/ #  (17)

 where ' ,k k i1 1 1d m= - +^ h  (18)
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J
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/ ,

s s i i

m J

m m m m m m1 1

d6

m m= - + + +

" ,
 (19)

Obviously, by the aforementioned argument, (11) and (17) are equivalent. 
Let h : K × S × Z ® [0,1] × RJ denote the solution to (17), such that 
h (k, s, z) = (l*, i*).

In order to prove our next result, we will change the decision variable in the 
above problem, so that each period consumer will determine the optimal levels 
of k¢, s¢ and l instead of (l, i). Using (18) and (19), it is straightforward to show

that , ' .m i k k s s
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m

i ii
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Let Q (k, s, z) be the set of all feasible (l, k¢, s¢) satisfying conditions (21)-(23). 
Moreover, let g : K × S × Z ® [0,1] × K × S denote the solution to (20), such 
that g (k, s, z) = (l*, k¢*, s¢*).

The above reformulation of the problem makes it possible to examine 
additional properties of the value function and optimal policies. Moreover, it 
helps rule out the non-linear constraints, and reduce the problem to a standard 
formulation as in Stockey, Lucas and Prescott [1989]. We proceed to our next 
result.

Proposition 2.2 Let Assumptions 1-4 be satisfied. Then v* is increasing, and 
strictly concave on K × S. Moreover, for any (k, s, z), g (k, s, z) is unique, and 
g (·,·, z) is a continuous function.

Proof: We examine problem (20), and follow argumentation as in Stockey, 
Lucas and Prescott [1989] (see Theorems 4.7 and 4.8). Q.E.D.
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The last result has strong implications. First of all, since v* is increasing on 
K × S, this implies that the higher the level of capital and unfinished projects, 
the higher the discounted lifetime utility of the agent. The result is quite obvious 
in the case of capital; a higher level of capital increases production, and 
thus consumption, however it seems to be less intuitive when talking about 
the measures of unfinished projects. Even though the measure of capital in 
formation does not directly affect the level of output, it increases the lifetime 
utility through higher consumption. Observe that the higher the s, the less 
resources have to be invested in order to complete the same level of operational 
capital. Since the output is divided solely to consumption and investments, the 
lower the total level of investments, the higher the consumption.

Even though the decision variables in problems (17) and (20) are different, 
the conclusion of proposition 2.2 holds for an argument maximizing problem 
(17). We proceed with the following remark.

Remark 2.1 Let Assumptions 1-4 be satisfied. Then for any (k, s, z), h (k, s, z) 
is unique, and h (·,·, z) is a continuous function.

Proof: Due to Proposition 2.2, g is unique and continuous. Since "m Î J,
' ', ,i k k s s

1
1m

m
ii

m

1

1

m
d= - - + -=

-
^^ ^h h h9 C/  i is unequivocally determined by

k, k¢, s, s¢. h is thus unique. Moreover, due to Berge’s Maximum Theorem, 
h (·,·, z) is continuous. Q.E.D.

The concavity of the value function is an important property, since it 
guarantees uniqueness of the optimal policy function. However, even though v* 
is concave, it is not necessarily differentiable. Observe that the Inada conditions 
imposed on the utility function guarantee that optimal l is in the interior of

the feasible policy set, as well as , , .f k l z i>* *
mm

L

1=^ h /  However, it gives no

additional information about the optimal values of investments i and the future 
stock of incomplete projects s¢. It is plausible that either for some m Î J 
im = sm, im = 0, or condition (22) is satisfied. In this case, the argument 
developed by Benveniste and Scheinkman [1979] would be invalid as the optimal 
policy would not be in the interior of the constraint set.

The lack of differentiability implies two substantial drawbacks. First, without 
a proper level of smoothness of v*, one cannot study the optimal solution 
through the first-order conditions imposed on the gradient of v*, not mentioning 
the inverse function theorem. Of course, since v* is concave, one could 
always determine the solution using the first-order conditions imposed on the 
subgradients the value function, but since the subgradients of the non-smooth 
functions are not singletons, this would essentially complicate the computations.

Second, when decentralizing the optimal allocations, the first-order 
derivatives of the value function play a crucial role in determining prices in 
the economy, as it will be shown in section 2.3.
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Fortunately, as presented in Rincón-Zapatero and Santos [2009], the question 
of differentiability can be determined even when the optimal policies are not 
in the interior of the constraint set. The authors develop sufficient conditions 
for the differentiability of the value function, without interiority assumptions 
imposed on argmax correspondences. In the following proposition, we use 
their result to prove the differentiability of the value function in a time-to-build 
economy with multi-stage investments.

Proposition 2.3 v*(·,·, z) Î C1 (K × S) for all z Î Z.

The proof of the above proposition is conducted in a similar way to the 
proof of theorem 3.1, and corollary 3.1 in Rincón-Zapatero and Santos [2009]. 
The argument is discussed in detail in the appendix.

The above result makes it possible to find a solution to the optimization 
problem via the first-order conditions of the corresponding Lagrangian. We 
state the following remark.

Remark 2.2 Let (l*, k¢*, s¢*) be an optimal solution to (20), and , , ,J
* * *

/k k m m J
n z n

d
$ .

J
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/m m J
z

d
$ .  the Lagrange multipliers corresponding to constraints (22), and (23).
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where

.

, , ' ' ,
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Proof: We use a straightforward application of the Karush-Khun-Tucker 
theorem. Q.E.D

Even though v* was proven to be differentiable, analyzing the first-order 
derivatives of the problems in (17) and (20) might not be a straightforward 
method for solving the optimization problems. Since the solution to (17), as 
well as to (20) might be at the bound of the feasible action set G (k, s, z) and 
Q (k, s, z) for some (k, s, z) respectively, the optimal Lagrangian multipliers 
might be hard to determine, and so the properties of the policy function may 
be hard to analyze using the first-order conditions.

With the lack of standard methods for determining the monotonicity of 
optimal policies, one could always refer to more general tools, like the ones 
offered by lattice programming. Unfortunately, it is commonly known that for 
any k, s, z, G (k, s, z) and Q (k, s, z), incorporated with a standard order on Rn 
are not lattices, which means that the standard monotone comparative statics 
methods developed by [48, 38, 31, 46, 47, 29] and others, are also improper for 
our analysis. For this reason, we will refer to a work by Quah [2007], which 
deals with the comparative statics of optimization problems, where a feasible 
action set might not be a lattice in the standard sense. In particular, Quah [2007] 
presents a new ordering suitable to simplexes, which under some concavity 
conditions of the payoff function preserves the monotonicity properties of the 
argmax correspondences. We proceed with our next result.

Proposition 2.4 Let assumptions 1-4 be satisfied. Then "z Î Z, g is non-decre-
asing on S in the natural ordering on Rn5.

The proof is discussed in the appendix. The last proposition characterizes 
the monotonicity of optimal solutions with respect to the measure of unfinished 
projects. It implies that the higher the measure of projects, the higher are the 
decisions of consumers concerning not only the measure of future projects, 
but also the time spent on labor.

However, the monotonicity takes place only with respect to s. Since the 
payoff function is not necessarily quasi-supermodular in (l, k), there is no 
guarantee that the optimal level of labor is increasing with k, as both the income 
and substitution effects might take place when the level of capital increases, 

5 Take any x, y Î Rn. We say that x is greater than y in the natural order (component-wise), 
and denote x ³ y, if "i, xi ³ yi.
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thus the monotonicity of g on k takes place only in some special cases of utility 
functions. We present an example of such preferences in remark 2.3.

On the other hand, the monotonicity of h is ambiguous even when g is 
non-decreasing. This means that the optimal level of investments does not 
have to be increasing in s even when the optimal level of s¢ is. Again due to 
the substitution and income effects between different stages of investment, the 
direction of changes in optimal investments in unequivocal.

In some special cases, the optimal policy function can be increasing on 
K × S. An example of this is presented below. In general, the result is valid 
whenever one can prove the monotonicity of the optimal level of labor with 
respect to capital. We present the following assumption.

Assumption 5 (Inelastic labor) Let u be defined as in assumption. un º 0.

Observe that once the utility of consumer is constant with respect to leisure, 
the optimal level of labor is always equal to 1. This in particular implies that 
the optimal level of labor is non-decreasing in k. This enables us to state the 
following remark.

Remark 2.3 Let assumptions 1-5 be satisfied. Then "z Î Z, (i) g is non-decreasing 
on K × S in the natural ordering on Rn.

If ¦ is concave and increasing on Z, and Q (dz¢|·) is concave on Z, then (ii) 
g are is non-decreasing in K × S × Z in the natural ordering on Rn.

Proof: The proof is similar to the proof of proposition 2.4. We begin with (i). 
This time observe that (20) is supermodular on ((l, k¢, s¢), (k, s)), since (20) has 
constant differences on (l, (k, s)). This implies that (20) is C-supermodular.

Since Q (k, s, z) is ascending in the C-flexible set order, as shown in the proof 
of proposition 2.4, g (·,·, z) is non-decreasing, by Corollary 1 in Quah [2007].

To prove (ii) we use the same argument, which is valid due to the concavity 
and monotonicity of ¦ (k, l,·) and the concavity of Q (dz¢|·). Q.E.D.

We conclude this section by a weak result concerning the existence of 
a steady state in the analyzed economy.

Remark 2.4 (Trivial steady state) For any constant shock level z Î Z, let a steady 
state be defined by a triple (lss, kss, sss), such that g (kss, sss) = (lss, kss, sss).

There exists a trivial steady state (lss, kss, sss) = q, where q is the zero vector.

We omit the proof.

Decentralized economy

In this section, we characterize an example of an economy that decentralizes 
the optimal allocations characterized in the previous part.
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The economy consists of three sectors: consumers, the production sector, 
and investment sector. We characterize each one of them respectively.

Consumers

The problem of a representative consumer is to maximize his lifetime utility, 
with respect to every period consumption and leisure. The preferences are 
defined as in assumption 1. Each period t, and in each state z, the consumer 
is in possession of a unit of time and a portfolio of investment assets, denoted 

.s Rt
Jd +  Let at = (kt, a1, …, aJ–1), where we will refer to kt as to a capital 

asset.
At the beginning of each period, the consumer receives a return from his 

asset portfolio at, at rates given by vector qt Î R+. Next, he lends capital kt to 
the production sector at price rt and receives remuneration from labor wt. The 
revenue is spent on a single consumption good ct, with the price normalized 
to 1, and a new portfolio at+1 at price pt, which will be due in the subsequent 
period. For a given portfolio at, given state z0, and any infinite sequence of 
prices , , ,p r wt t t t 0

3
=

+
" ,  the optimization problem of the consumer is,

 , , ,a maxv z E u c n
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where operator E0 is defined by transition kernel Q, as in assumption 3. As 
in the previous section, the existence and characterization of the equilibrium 
allocations and prices will be derived using the dynamic programming 
arguments. For this reason, the Bellman equation corresponding to the above 
problem, for any given a, z is as follows. To simplify the notation, we omit 
time subscripts, and denote the future state variables by a¢, z¢.

 , , ', ' ' ,a amaxv z u c n v z Q dz z
, , 'a

CE

c n z
b= +^ ^ ^ _bh h h il
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#  (27)
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Corollary 2.1 Let assumption 1 be satisfied, then for any at, and any vector of 
prices , , , ,p q r wt t t t t 0

3
=

+
" , ,

(i) there is a unique solution vCE to (27). Moreover, vCE is continuously 
differentiable, strictly increasing and strictly concave;

(ii) let g : K × S ® [0,1] × K × S be an argument solving problem (27). g is 
a continuous function, non-decreasing on S.

Proof: To prove both (i) and (ii) we use the same arguments as in the 
proofs of proposition 2.1, 2.2, and 2.4. Q.E.D.

Production sector

The production sector in our economy is presented in a very standard 
way. We assume that an infinite mass of identical agents produce a unique 
consumption good ct, using technology ¦, described in assumption 2. Taking 
the prices of the consumption good and input factors as given, each firm buys 
factors of production and determines production plans in order to maximize 
its profit, given the current productivity shock zt.

With the price of the consumption good normalized to 1, and the prices 
of inputs wt and rt, each firm solves

 , , .max f K L z w L r K
,K L

t t t t t t t
t t

- -^ h  (30)

Since the technology of production exhibits a constant return to scale (see 
assumption 2), in an equilibrium profits will be drawn to zero.

Investment sector

The investment sector consists of an infinite number of identical firms. 
Each firm is investing in current unfinished projects. Taking the prices as 
given, the firms are buying assets st at a given price qt, which consumers 
bought the previous period, and invest them in different stages of unfinished 
projects of capital accumulation. The investment profile will be denoted by 
it = (i1,t, …, iJ,t), where ij,t denotes an investment in a project j periods before 
completion. The technology of investment is described by

,s s i i, , , ,m t m t m m t m m t1 1 1m m= - ++ + +

and

,k k i1 ,t t t1 1 1d m= - ++ ^ h

where sm,t+1 and kt+1 denotes the measure of new projects and capital, after 
the current period investment took place.
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By the end of each period, firms sell a new portfolio of assets to consumers 
at price pt, in order to maximize profits over st+1, st and it

,p s q s it t t t kk

J

1 1$ $- -+ =
/

subject to ,s s i i, , , ,m t m t m m t m m t1 1 1m m= - ++ + +  and .k k i1 ,t t t1 1 1d m= - ++ ^ h

As in the case of the production sector, it is easy to verify that the investment 
technology exhibits constant returns to scale, and so in an equilibrium, the 
profit of all investment firms will also be equal to zero.

General equilibrium

Once we have defined an economy of our interest, we present the definition 
of an equilibrium.

Definition 2.1 (Equilibrium) For any sequence {zt} Î Z¥, an equilibrium is
a tuple of allocations and prices , , , , , , , , , , , ,q p a s ir w c n l K L* * * * * * * * * * * *

t t t t t t t t t t t t t 0

3

=
$ .

such that
(i) Consumers optimize their lifetime utility, taking prices as given,
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(ii) Production firms optimize their profits, "t,
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(iii) Investment firms optimize their profits, "t,
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(iv) Markets clear, "t, 

, , , , , , 1.p a a sf K L z c K k L l n l* * * * * * * * * * * * *
tt t t t t t t t t t t t t1$= + = = = + =+_ i

The above definition of a general equilibrium is standard and refers directly 
to the notion of equilibrium presented by Arrow and Debreu in the infinite 
dimensional setting. Condition (i) requires that consumers maximize their 
lifetime utility with respect to the budget constraints. The second and third 
conditions require that firms maximize their profits, while (iv) imposed the 
market clearing condition.

Once we have defined the notion of an equilibrium, we proceed to the next 
result, stating the existence of an equilibrium.

Theorem 2.1 Let assumptions 1-4 be satisfied. Then, the equilibrium defined in 
definition 2.1 exists.

Proof: The presented economy is a standard, convex, infinite horizon 
economy with a space of goods defined by L¥. It is sufficient to show that 
the presented economy is only a special case of the economy presented in 
Bewley [1972]. We refer the reader to the original paper. Q.E.D.

Eventually, we present a result showing that the allocations obtained in the 
decentralized economy are equivalent to the optimal allocation chosen by the 
social planner. Moreover, we provide a constructive result that provides a method 
for computing equilibrium prices. The idea is based on a work by Negishi 
[1960], who was the first to show that general equilibrium allocations can be 
obtained through a maximization problem of a social planner, where prices 
were determined by the Lagrange multipliers of the corresponding problem. 
The result was extended to economies with an infinite horizon by Papageorgiou 
[1960], who obtained the same result using the dynamic programming approach. 
We present the following corollary based on their results.

Corollary 2.2 Let assumptions 1-4 be satisfied. Then the first and second 
welfare theorems hold. Moreover, , , ,q ar q v z*

,
*

,
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t k t k t a
CE

t td+ =-_ _i i  where q ,
*
k t  

and q ,
*
k t-  denote the first element and a vector of all but the first element of 

q*t  respectively.

Proof: First we proceed with a proof of the first welfare theorem. The
solution of the production sector problem leads to , ,r f K L* * *

t K t t= _ i  and
, ,f K Lw* * *

Lt t t= _ i  for all t. Moreover, due to constant returns to scale of the

production technology, , .t f K L r K w L* * * * * *
t t t t t t6 = +^ _h i  On the other hand, the

maximization of the investment sector and constant returns to scale of the

investment technology imply that .p s q s i* * * *
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Now we proceed to the consumer problem. Since the utility function is concave 
and increasing, due to the Karush-Khun-Tucker theorem, the consumer budget

constraint is binding, i.e. .q a p ar k w l c* * * * * * * *
t t t t t tt t t tt0 10$ $+ + =

33
= +=8 8B B/ /

Moreover, due to production and investment sector optimization, as well as capital

and labor market clearance, we conclude that , , .t f k l z i c* *
,
* *

t t t k tk

J

t16 = +=^ _h i /
Since ,s at * *

t t6 =^ h  and due to investment sector optimization, we conclude
that unfinished capital stock allocations are equivalent to those determined by 
the social planner, which completes the proof.

The proof of the second welfare theorem is conducted analogously to the 
proof in Papageorgiou [1960], that is why we refer the reader to the original 
paper in order to safe space.

Eventually, since vCE is differentiable, by the work on Negishi [1960] 
we conclude that the equilibrium prices are equal to the gradient of 
the consumer value function evaluated at the equilibrium allocation, i.e.

, , ,q ar q v z* *
,

* *
t k k t a

CE
t td+ =-_ _i i  which completes the proof. Q.E.D.

Our final result presents two constructive conclusions. First, giving an 
example of an economy that decentralizes the optimal allocation makes it 
possible to analyze the equilibrium allocations through the optimization problem 
of a social planner. Moreover, since the consumer value functions are equivalent 
in the case of both a centralized and decentralized economy, the vector of the 
equilibrium prices is in fact equivalent to the gradient of the value function 
obtained through social planner optimization. In other words, finding a solution 
to the centralized problem is sufficient to characterize the allocations and 
prices in the decentralized economy.

Conclusion

In our paper we presented a constructive method for studying dynamic 
general equilibrium models of time-to-build economies with multiple-stage 
investments, thus generalizing the results obtained in the seminal paper by 
Kydland and Prescott [1982]. Using several results in dynamic programming 
theory and monotone operators (e.g. by Matkowski and Nowak [2009], Quah 
and Strulovici [2009] and Rincón-Zapatero and Santos [2009]), we construct 
a convergent algorithm for computing optimal allocations of the model, as well 
as propose an economy that decentralizes the allocations in the Arrow-Debreu 
general equilibrium. Eventually, we present comparative statics results, useful 
for a more general analysis of the problem, and discuss the efficiency of the 
presented economy.
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Appendix

Proof of proposition 2.3: We replicate the proof of theorem 3.1, and corollary 
3.1 in Rincón-Zapatero and Santos [2009]. We only have to verify whether all 
four conditions D1-D4 presented in the paper are satisfied.

Assumption D1 is satisfied by Assumptions 1 and 2.
For condition D2 to be satisfied, it is necessary to show that optimal policies 

are in the interior of N × K × S. Due to the Inada conditions imposed on u, 
the optimal level of labor l* Î (0,1). Condition (22) implies that k¢ > 0, 
whenever d < 1. Otherwise k¢ > 0, by the Inada condition imposed on u, 
and the fact that ¦ (0, l, z) = 0, all l Î N, and z Î Z. It is sufficient to 
show that for any m, s 0'

m =  is never optimal. Assume the contrary. For some 
(k, s, z), and some m, let k¢0, l0 and ' ' , , ', , , , 's s s s s0, , , ,j j J0 1 0 1 0 1 0 0f f= - +_ i  
be a solution to (20). Then,
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for some (k", s", z") satisfying (20) in the subsequent period. Let s" = (s"1, …, sJ"), 
and se' = (s'1,0, …, sj–1,0', e, sj+1,0 – e, …, sJ,0'), sj+1,0 ³ e . Observe that any path 
of unfinished capital {se', s"} is feasible, and yields the same lifetime utility 
for the consumer as {s', s"}. This means that se' must also be optimal, which, 
due to Proposition 2.2, yields a contradiction. We have shown that, for any 
s0', we can construct a vector se' ¹ s0', which yields the same level of utility. 
This implies that s0' is not optimal. Assumption D2 is satisfied.

Refer to constraints (21)-(23). Since they are linear with respect to the 
decision variables, and linearly independent, Assumption D3 is satisfied. Since 
the constraints are linear, their derivatives are constant, as a result of which 
the tansversality condition in Assumption D4 in the paper always holds with 
B0 = 0. The proof is complete. Q.E.D.

Before stating the proof of proposition 2.4, we present the following two 
lemmas.

Lemma 2.1 Let sets A and B be ascending in the C-flexible set order (see [Quah, 
2007]). Then A Ç B is also ascending in the C-flexible set order.
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The proof is trivial and is consequently omitted. The second lemma presents 
a class of sets that is always isotone in the C-flexible order.

Lemma 2.2 Let sets : : ,RA x a x bn Td # #a= +" ,  where a is a vector in Rn, 
a, b are positive scalars, and a £ b. Then A is ascending in the C-flexible set 
order in a and b.

Proof: Observe that A is defined by two hyperplanes. Let 
:RH x a xa

n Td $ a= +" ,  and : .RH x b xb
n Td $ a= +" ,  Obviously Ha and Hb

are ascending in the C-flexible set order in a and b respectively, as well as 
: / .RH H'a

n
a= +  Moreover, A = Ha¢ Ç Hb. The rest follows Lemma 2.1. Q.E.D.

Now we proceed to the proof of Proposition 2.4.

Proof of proposition 2.4: Due to Proposition 2.2, v* is concave. Moreover, 
it is easy to verify that (20) is supermodular in (l, k¢, s¢), and has increasing 
differences in ((l, k¢, s¢), (s)). This implies that (20) is C-supermodular (see 
Proposition 2 in [Quah, 2007]).

Refer to the constraints of problem (20). (21) is a standard budget constraint 
that is ascending in the C-flexible set order on K × S × Z (see [Quah, 2007]). 
Observe that each of the constraints (22) and (23) is defined by two parallel 
hyperplanes. Due to Lemma 2.2, they define a set ascending in the C-flexible 
set order on (l, k, s). Since Q (k, s, z) is defined by an intersection of sets 
defined by constraints (21)-(23), by Lemma 2.2 it is also ascending in the 
C-flexible set order.

The rest follows Corollary 1 in Quah [2007]. Q.E.D.
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ON TIME-TO-BUILD ECONOMIES
WITH MULTIPLE-STAGE INVESTMENTS

S u m m a r y

The paper presents a constructive method for studying dynamic general equilibrium 
models with time-to-build technology. In the work, the author modifies a seminal work 
by Kydland and Prescott [1982] by allowing agents to make multi-stage investments. 
In this framework, consumers decide on how much to consume each period, and 
how much to invest in future capital, which will yield them income in future periods. 
Unlike in Kydland and Prescott, agents are allowed to postpone, stop or accelerate 
the investment by devoting a certain amount of their product to investments, which 
allows consumers to smooth investment expenses throughout the investment process 
rather than incur the whole cost at the beginning of the investment, as in Kydland 
and Prescott.

The analysis of the model poses several technical issues, which are tackled in the 
article. First, the premises of the model exhibit unbounded returns, which makes several 
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dynamic programming arguments invalid. Second, since the imposed assumptions do 
not exclude boundary solutions, the consumer value function of the underlying problem 
might not be differentiable, as the standard Benveniste and Scheinkman [1979] argument 
does not hold. Finally, as the feasible action set is not a lattice, standard monotone 
comparative statics cannot be introduced in order to bring about the monotonicity 
results concerning the policy functions in the model.

Using dynamic programming methods and monotone operators theory (by Matkowski 
and Nowak [2009], Quah and Strulovici [2009], and Rincón-Zapatero and Santos [2009]), 
the author presents a convergent algorithm for the computation of optimal allocations 
of the model, as well as proposes an economy that decentralizes the allocations in the 
Arrow-Debreu general equilibrium. Eventually, the author presents some comparative 
statics results useful for a more general analysis of the problem, and discusses the 
efficiency of the presented economy.

Keywords: time to build, dynamic general equilibrium, monotone comparative statics


